- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Aguirre, Ander (1)
-
Lyu, Hanbaek (1)
-
Sivakoff, David (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We investigate two discrete models of excitable media on a one-dimensional integer lattice ℤ: the κ-color Cyclic Cellular Automaton (CCA) and the κ-color Firefly Cellular Automaton (FCA). In both models, sites are assigned uniformly random colors from ℤ/κℤ. Neighboring sites with colors within a specified interaction range r tend to synchronize their colors upon a particular local event of 'excitation'. We establish that there are three phases of CCA/FCA on ℤ as we vary the interaction range r. First, if r is too small (undercoupled), there are too many non-interacting pairs of colors, and the whole graph ℤ will be partitioned into non-interacting intervals of sites with no excitation within each interval. If r is within a sweet spot (critical), then we show the system clusters into ever-growing monochromatic intervals. For the critical interaction range r=⌊κ/2⌋, we show the density of edges of differing colors at time t is Θ(t−1/2) and each site excites Θ(t1/2) times up to time t. Lastly, if r is too large (overcoupled), then neighboring sites can excite each other and such 'defects' will generate waves of excitation at a constant rate so that each site will get excited at least at a linear rate. For the special case of FCA with r=⌊2/κ⌋+1, we show that every site will become (κ+1)-periodic eventually.more » « less
An official website of the United States government

Full Text Available